
Documentation of rddrssr

rddrssr - An address distribution network

Hochschule der Medien, Stuttgart

Studiengang Medieninformatik

by

Sven Pfleiderer

(sven@roothausen.de)

October 25, 2010

1

Abstract

We all live in times of digital communication: Almost everybody is reachable via cell-

phone, instant messaging or email. Not only the communication itself evolved but also

the communication channels increased dramatically. Some people have multiple email

addresses, instant messaging accounts and profiles on several social networks. It is

virtually impossible to keep track of all the information available.

To address these problems, Moritz Haarmann came up with an idea of a system

which is able to manage contact data in a distributed and convenient way. The result

of this idea was a protocol proposal which enables users to manage their address data

so they can just stop worrying about it.

This documentation describes the implementation details and design decisions made

to create an usable software which uses the protocol defined by Moritz.

2

Contents

1 Motivation 5

1.1 Current Situation . 5

1.1.1 Digital Communication . 5

1.1.2 Groupware . 5

1.1.3 Cloud based Solutions . 6

1.1.4 Social Networks . 6

1.2 Where Is The Innovation? . 7

2 Protocol Design 8

2.1 Design Goals . 8

2.1.1 Introduction . 8

2.1.2 Open . 8

2.1.3 Complete . 8

2.1.4 Secure . 8

2.1.5 Distributed . 9

2.1.6 Easily understandable . 9

2.2 Technical Decisions . 9

2.2.1 Brief Overview . 9

2.2.2 HTTP Transport . 9

2.2.3 REST Semantics . 10

2.2.4 JSON Data Format . 10

2.2.5 RSA Encryption/Signatures . 11

2.3 Metadata Transport . 11

2.3.1 Why metadata? . 11

2.3.2 Server Info . 11

2.3.3 Types . 12

2.4 Payload Transport . 13

2.4.1 Supported actions . 13

2.4.2 User Data . 14

2.4.3 Request Cycle . 14

2.4.4 Transport Container . 17

2.4.5 Security . 18

2.5 Changes . 18

3 Implementation 19

3.1 Frameworks and Middleware . 19

3.1.1 Scala . 19

3

3.1.2 Lift . 19

3.1.3 MongoDB . 20

3.1.4 SBT . 21

3.2 Application architecture . 21

3.2.1 Big picture . 21

3.2.2 Configuration . 22

3.2.3 Companion objects . 23

3.2.4 API-Dispatch . 24

3.2.5 Database objects . 25

3.2.6 JSON-Parsing . 26

3.2.7 Actor system . 27

4 Lessons Learned 29

4.1 Problems == Opportunities . 29

4.2 Read framework code . 29

4.3 Ask the community . 29

4.4 If nothing else works: println does . 30

4.5 Scala works well for web-development 30

5 Perspective 31

5.1 Protocoll Specification Rework . 31

5.1.1 Nobody is perfect . 31

5.1.2 Get really RESTful . 31

5.1.3 Model clear semantics . 31

5.2 Implementation Rework . 31

6 References 33

4

1 Motivation

1.1 Current Situation

1.1.1 Digital Communication

We all live in times of digital communication: Almost everybody is reachable via cell-

phone, instant messaging or email. Not only the communication itself evolved but also

the communication channels increased dramatically. Some people have multiple email

addresses, instant messaging accounts and profiles on several social networks. It is

virtually impossible to keep track of all the information available.

The systems which are used today can be divided into three categories:

• Groupware

• Cloud based Solutions

• Social Networks

1.1.2 Groupware

Groupware, or Collaborative Software, are systems which enable persons or companies

to communicate and organize their work. Most groupware solutions provide at least

email and calendar access and some form of rudimentary directory to access contact

data.

Today, a lot of big software companies provide some kind of groupware suite and

most middle sized and big companies rely very strongly on these solutions like Microsoft

Exchange or Lotus Notes. These products are distributed under proprietary licenses,

use closed non standardized protocols and are only available on specific platforms.

Furthermore the contact management is mostly really basic.

Most of the systems are capable of supporting at least two kinds of directories: A

global one storing data of the organization which is centrally maintained and a private

one which is freely editable by the user.

There are also some solutions which are available as free software and use open

standards, like LDAP [Wahl et al., 1997] or SyncML, to distribute contact information.

But the problem with this solutions stays basically the same: We have centralized

topologies which are single points of failure that are not aware of frequently occurring

changes of contact data.

Both – open and closed solutions – may work in companies where contact data

is limited to some crucial information, like phone numbers or email addresses, and is

mostly provided by the company itself. When it comes to private relationships, they

5

all lack the possibility to support the latest and greatest Web 2.0 service because the

data fields they use are mostly limited. Additionally they are not able to identify when

contacts change their personal data because they only represent a set of data which is

maintained by the owner. If this owner does not know about changed information or

just does not care to update it, it is outdated and, in the worst case, the user has no

way to stay in touch with this particular contact.

1.1.3 Cloud based Solutions

Cloud Computing is certainly one of the most dropped buzzwords in the last years.

The term describes a system, where services are provided on demand by a bunch of

servers which are accessible over the Internet.

A lot of cloud based applications are accessible via interfaces which are based on

web technologies. To access these services the only thing a user needs is a web browser

capable to render HTML and CSS and able to execute JavaScript. Most of these services

provide additional web based APIs to be accessible by desktop or mobile applications.

One well known provider of cloud services is Google. Google offers search, email

services, personal calendars, mailing lists and also a contact management interface

called Google Contacts. There are some other providers which offer similar products

but to illustrate the nature of these services, only Google Contacts is covered.

Google Contacts is a cloud based application which allows users to import, store and

manage the information of their contacts. It also allows users to synchronize this data

to mobile phones, address books or connect to groupware clients via outlook connectors.

It also supports SyncML to connect to mobile phones which does not implement the

Google API.

1.1.4 Social Networks

Though social networks could be seen as a subset of cloud based applications, the way

they handle address information differs from “normal” cloud based applications. They

are, generally speaking, platforms which invite people to create a “User Profile” for

themselves and to connect with other users of this platform. This profile often contains

personal data like pictures, personal interests and address information. The selection

of the given data strongly depends on the network used. Some well known examples

are Facebook, Linkedin or Xing.

A big benefit of social networks is that data available to other users mostly keeps

up to date and that personal relationships are represented in the graph of the network.

The big drawback of this approach is that almost none of these networks allows

data exchange through standardized protocols like SyncML or LDAP. So they are only

6

usable on smartphones or desktop computers capable to handle the network’s APIs.

Another problem of social networks is that there are many of them and they lack cross

network accessibility. So users of different networks are not able to connect beyond

network boundaries.

1.2 Where Is The Innovation?

While the communication technology itself moved on, the technology to distribute our

contact information stayed mostly the same: There are digital business card formats

like VCard, directory services like LDAP and even digital address books. But they are

all nothing more than electronic counterparts of a technology which we had for a really

long time – written text on business cards, telephone books or address books. In short:

Ancient technology converted into digital form. Sure, the electronic representations

have some benefits compared to their ancient counterparts, but the key problems stay

the same: Once information is stored, it takes a lot of work to update it. Most people

have no desire to invest that time so, after a short time, the information stored is

outdated and stays that way.

Cloud based solutions provide a more convenient way to access and sync your data

but still lack features like push update and relationship management. Social networks

seem to be better suited for the job but the drawbacks are user lock-in into one network

and centralized infrastructures which are owned by a single company. Additionally the

user has no clue what happens to the data provided: Is it stored in a secure way

and handled in a privacy preserving manner [Jones and Soltren, 2005]? Who has the

authority to access it? What happens to the data if the company responsible for the

system is bought? What happens if the company cease to exist?

To address all the issues with current systems in a modern way, the system was

completely built from scratch. The goal of this project was to implement simple but

powerful software which provides an interface based on well understood standards.

It’s only purpose is to manage and distribute contact data in a modern and platform

independent way.

7

2 Protocol Design

2.1 Design Goals

2.1.1 Introduction

The final goal of this project is to provide a robust solution which allows people to

just stay in touch with their contacts without having to worry if the contact data is

still valid. The purpose of the protocol is to enable nodes of a network to exchange

their contact data. It has been developed by Moritz Haarmann [Haarmann, 2010] and

follows some simple design goals.

• Open

• Complete

• Secure

• Distributed

• Easily understandable

2.1.2 Open

The protocol should be free to use for everyone. Everyone must have the possibility to

look at a freely available specification and implement a software which uses it – without

any license or patent restrictions.

Additionally the whole development process of the protocol should be community

driven and open to new ideas and feedback from users or other developers. Users should

be encouraged to participate with the goal of making the system better.

2.1.3 Complete

To support all the needs users have, the system should be able to handle all kinds of

contact exchange in an intuitive way. It should be as close as possible to the reality of

human relationships and handle the data exchange as gracefully as possible.

2.1.4 Secure

Security is an important factor when handling private contact data. Not only because

users demand security but also because a lot of the requirements depend on secure

transport. There are basically three security matters that should be addressed:

• Transported user data should only be visible to the entities entitled to see them.

8

• Harmful modification of data should be prevented.

• The protocol should be robust enough to handle potential attacks.

2.1.5 Distributed

To be able to compete with big players like Google or Facebook, which provide central-

ized systems with enormous resources, the system has to act as a distributed network.

It should be possible for everyone to run software which supports the protocol.

That software should have the possibility to connect to every other node in the

network to exchange contact data. Examples of someone who could run such nodes

would be companies that provide services to their users, online communities or private

users who want to provide such services to themselves and their friends.

2.1.6 Easily understandable

To attract a significant amount of users, the protocol has to be simple to understand

and to implement. In addition, simple protocols have proven to be more robust and

secure because the simpler a protocol design is, the lower is the possibility of errors or

needless attack vectors.

2.2 Technical Decisions

2.2.1 Brief Overview

The protocol is designed to transport contact data over a HTTP connection using

REST Semantics. The data itself is encapsulated within a JSON container. The APIs

are divided into two parts: The Server-Server API and the Client-Server API. Au-

thentication between multiple servers is provided by asymmetric encryption. Between

clients and servers, the clients authenticate themselves using OAuth.

2.2.2 HTTP Transport

HTTP [Fielding et al., 1999] is likely to be the most used networking protocol world-

wide. All websites are served via HTTP and a lot of applications use HTTP to transport

their data. Using HTTP to transport data has some really great advantages:

• Great library and tooling support: Because of the widespread use of HTTP there

are libraries for almost every programming language and a lot of frameworks

which use them.

• Firewall friendly: As a result of the great distribution of HTTP, it is not blocked

on most firewalls.

9

• Well understood semantics: A lot of application developers are familiar with

HTTP.

• Well documented error scenarios and status codes: There is a whole set of prede-

fined status codes to handle errors and corner cases which can be used inside the

application logic.

• Accessible through browsers: Modern web browsers are not only able to act as a

simple client and access HTTP based APIs, they are also capable to run whole

applications written in JavaScript to interact with them.

2.2.3 REST Semantics

REST, or Representational State Transfer, is a style of software architecture for web

based APIs. It was defined by Roy Fielding [Fielding, 2000] and represents HTTPs

ability to address resources via URL patterns and operate on them with HTTP protocol

methods which are normally called HTTP verbs. In this protocol version only the four

most known verbs are used: GET, PUT, POST and DELETE.

HTTP Verb Usage

GET Retrieve data
PUT Update existing data
POST Create new data
DELETE Delete existing data

Table 1: Used HTTP Verbs

These semantics provide a simple CRUD1-interface which allows users to create,

view and alter data addressed by its URL pattern. To make such an API usable these

patterns have to be consistent.

For example, a URL pattern to identify a collection of resources would be

http://example.com/resources/. A HTTP GET request would return a list of all stored

resources. If one wanted to access the resource identified by the ID 1337, the URL

to access this resource would be http://example.com/resources/1337. To delete this

resource, a user would only need to send a HTTP-DELETE request to this URL.

2.2.4 JSON Data Format

JSON, the JavaScript Object Notation, is a lightweight data exchange format which

has gained a lot of attention from developers since it was first discovered and named by

Douglas Crockford [Crockford, 2006]. It is a simple subset of ECMAScript/Javascript

1Create, Read, Update, Delete

10

[Ecma International, 1999] and easy to parse. There are many libraries for a lot of

programming languages and it is used as data exchange format for a lot of big web

applications.

1 { "object" : { "title" : "Hello" , "value" : "World" } }

Listing 1: Simple JSON Example

2.2.5 RSA Encryption/Signatures

To protect transport data against hostile attacks, it should be encrypted to prevent

others from sniffing the contents. Furthermore it should be signed to prevent harmful

alternation. These services are both provided by the widely used RSA algorithm. It is

well supported by crypto suites like OpenSSL or the Java Security API and it is well

tested against all sorts of attacks.

It would be possible to use HTTPS, the secure and encrypted version of HTTP, to

provide secure transport. But a lot of hosting environments do not support HTTPS. To

allow a secure transport in such an environment, it was decided to use RSA encrypted

content on top of unencrypted HTTP instead of using HTTPS.

2.3 Metadata Transport

2.3.1 Why metadata?

To communicate with each other, servers need to exchange some important information.

Some of this information would be:

• Public RSA keys

• A list of supported data types and their definitions

• A base URL which is called on callback actions

If these items are not provided, the communication will fail. To avoid this problem,

a read only interface for metadata is provided. It basically consists of two parts which

are enclosed under the /meta/ namespace. These parts are the Server Info and the

available types.

2.3.2 Server Info

To have an entry point for all crucial information, the protocol defines a “Server Info”

artifact, as seen as in Listing 2, which provides this information.

11

1 {
2 "name" : "rddrssr.io" ,

3 "baseUrl" : "http://contacta.de:8080/" ,

4 "software" : "scala foobar" ,

5 "types" : ["core.im.xmpp" ,"core.person.date_of_birth" ,"core.person.

email" ,"core.person.first_name" ,"core.person.gender" ,"core.

person.last_name" ,"core.person.phone"] ,

6 "version" : 1 ,

7 "key" : "MII...=="

8 }

Listing 2: Server Info of example server

2.3.3 Types

People tend to change not only their existing data like email addresses or telephone

numbers but also start using new communication services like social networks or instant

messaging. In the future, they may also use services which are not even invented. So

extensibility is a really important point which has to be covered.

To allow developer to extend the system with their own types, a metadata format

in JSON was defined which covers the most important features of transport data:

Validation and Recognition.

To add a new type which can be interpreted and validated by another system, all a

URL HTTP Method Description

/meta/index.json GET Server Info: Data needed to commu-
nicate with the server.

/meta/types/index.json GET List of all supported types.
/meta/types/[typename].json GET Type definition only for the type

typename.

Table 2: Items of the meta namespace

Attribute Description

name Human readable name of the server.
baseUrl A base URL used for callback actions.
software The software which is running on the server.
version The running version of the software.
types An array containing the names of the available types.
key The public key of the server which is needed for encryption and signature

validation.

Table 3: Available attributes of the “Server Info”

12

developer has to do is to implement such a definition and announce it to other servers.

An example of such a definition is shown in Listing 3.

1 {
2 "cname" : "XMPP" ,

3 "information" : "http://momo.brauchtman.net/types/" ,

4 "name" : "core.im.xmpp" ,

5 "occurences" : [0 , 0] ,

6 "length" : 2 55 ,

7 "revision" : 1 ,

8 "format" : "/\b[A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}\b/"

9 }

Listing 3: Data type definition for XMPP

2.4 Payload Transport

2.4.1 Supported actions

Between two servers of a given network, there is only a limited amount of actions which

have to be supported.

• Request a user relation

• Accept a user relation

• Update contact data

• Delete user relations

There are some actions which are planned for future versions of this protocol but

are not specified at the moment.

• Migration of users between servers

Attribute Description

name Unique name of the type
cname Canonical name of the type
information A URL where a human readable explanation can be found
occurences An array with two integer values: The minimal and the maximal occur-

rence of this type. If both have the value 0, there is no restriction.
length The length of the content in chars.
revision The revision of this type to distinguish versions.
format A regular expression to validate the content.

Table 4: Available attributes of a type

13

• Announcement of new types

• Public key revocation

2.4.2 User Data

The actual user data is also transported inside a JSON format which contains the user’s

URL and an array of data. An example is shown in Listing 4.

Attribute Description

userurl The URL which identifies the user with its server.
data An array of data containing key-value pairs of data. A key is identified

by the attribute type, the value is identified by the attribute data.

Table 5: Attributes of the user data

1 {
2 "userurl" : "http://contacta.de:8080/pfleidi" ,

3 "data" : [{
4 "type" : "core.person.first_name" ,

5 "value" : "Sven"

6 } ,{
7 "type" : "core.person.last_name" ,

8 "value" : "Norris"

9 } ,{
10 "type" : "core.person.email" ,

11 "value" : "sven@roothausen.de"

12 } ,{
13 "type" : "core.im.xmpp" ,

14 "value" : "a@aaaa.dd"

15 }]

16 }

Listing 4: User data

2.4.3 Request Cycle

Before the actual payload can be transported, the metadata has to be fetched if it is not

stored already. There may be some other actions, like asking the user for permission,

a system has to finish until it is able to react to incoming request. For this reason, all

requests which transport a payload are designed to be asynchronous.

As seen in Figure 1, the initialisation process needs one request per server to com-

plete: A request to create a new relation and a request to accept this relation and

transport the data needed.

14

Bob's Server Alice's Server

POST /alice/relation/new.json

POST /bob/link/new.json

Figure 1: Initialisation of a relation

The first request contains the requesting user’s URL and a generated token. This

token is needed to verify the validity of the corresponding callback request.

After Bob’s server sent a relation request to Alice’s server, Alice’s server fetches the

needed metadata and asks Alice for permission to forward her contact information to

Bob. If this permission is granted, Alice’s server sends all contact data of Alice together

with her URL and the token received before to Bob’s server. After that, Bob’s server

is able to validate the token, parse the data and validate it, too. If the data passes all

validations it gets stored in the database of Bob’s server. As seen in Listing 5, all data

is encapsulated in JSON.

Because only Bob’s server generates and validates the token, this mechanism is

completely implementation agnostic and doesn’t need any support on the side of Alice’s

server.

Figure 2: Relation Request sniffed with Wireshark

1 {
2 "userurl" : "http://contacta.de:8080/pfleidi" ,

3 "token" : "EbjDfS6zNy389gdho5CpUzomlmI=" ,

4 "data" : [{
5 "type" : "core.person.first_name" ,

6 "value" : "Sven"

15

Bob's Server Alice's Server

POST /alice/link/update.json

POST /bob/link/update.json

Figure 3: Update of a relation

7 } ,{
8 "type" : "core.person.last_name" ,

9 "value" : "Pfleiderer"

10 } ,{
11 "type" : "core.person.email" ,

12 "value" : "sven@roothausen.de"

13 } ,{
14 "type" : "core.im.xmpp" ,

15 "value" : "pfleidi@jabber.roothausen.de"

16 }]

17 }

Listing 5: User data encapsulated in link request

The update request shown in Figure 3 is actually really similar to the link request

which forwards user data to other servers. With the only exception that no callback

token is needed.

After a user updates its contact information, the server pushes the new information

to all active links of this user. This happens usually without any requests from other

servers.

Because not all links are needed forever, the protocol also provides a (not yet imple-

mented) destroy request which is shown in Figure 4. After such a request is received,

the receiving server deletes the semantic link of the corresponding user and the contact

who sent the request.

16

Bob's Server Alice's Server

POST /alice/link/destroy.json

POST /bob/link/destroy.json

Figure 4: Destruction of a relation

2.4.4 Transport Container

Container Fundamentals All requests which are able to alter the state of data

stored on other servers have to be signed to ensure the identity of the sender. They

also have to be encrypted to protect the user’s privacy. To allow that in a reusable

manner, the protocol specifies a transport container in which data is encapsulated.

Name Description

address The base URL of the server.
checksum A SHA-256 Hash of the encrypted

payload.
signature A signature over the encrypted pay-

load.
payload The encrypted payload itself.

Table 6: Items of the meta namespace

To make the encapsulation process as efficient as possible the first value to be

validated has to be the checksum. After that, the signature has to be verified. If both

tests pass, the payload itself can be decrypted. If one of the previous test fails, the

payload can be discarded and no time is wasted for decryption.

Version 1 The first version of the container was implemented using JSON. For test-

ing and debugging purposes the payload had to be transmitted decrypted. Most JSON

parsers were parsing the whole content and it was not trivial to get an unparsed rep-

17

resentation of the payload part inside the container. Because of that behavior this

specification was soon discarded in favor of version 2 of the container.

Version 2 HTTP POST-requests support named query parameters which are sep-

arated by an ampersand (“&”). The second version of the container transports all

attributes as POST query parameters. With this notion it is really simple to separate

the payload and the other values to ensure it is valid.

2.4.5 Security

As explained before: The security of this protocol relies strongly on strong cryptog-

raphy, namely RSA, AES and SHA1. All transported content is signed, hashed and

encrypted and a proper implementation has to validate all of those properties. Ad-

ditionally there is a mechanism to generate tokens which are only valid for certain

requests. The possibility of a mechanism to revoke public keys was also discussed but

never implemented, because such a mechanism would be very vulnerable to denial of

service attacks.

2.5 Changes

Most proposals are not perfect and this proposal is no exception. Because of that, some

parts of the specification written in Moritz’ thesis had to be slightly modified.

• Because of different character encodings, the length of a data type is defined in

chars, not bytes.

• The options field was removed because it has not been used.

• The container format has been changed (as described in 2.4.4)

• The number of requests to establish a semantic link between two users of different

servers was reduced to two.

18

3 Implementation

3.1 Frameworks and Middleware

3.1.1 Scala

Scala is a hybrid programming language designed to run on the Java-VM. It implements

features from both, functional and object oriented programming paradigms, combined

with some syntactic sugar and some concepts to make it simple to implement native

looking domain specific languages.

It has a static type system, like Java, and uses exactly the same data types. Con-

trary to Java, Scala supports type inference so most of the type declarations, and also

semicolons, are optional.

For concurrency Scala supports an abstraction called the Actor Model in addition

to the Java concurrency APIs. The usage and purpose of this API is explained in

[Ghosh, 2008].

Unlike Java, Scala also supports “Traits”. These are language constructs which

define, like Java Interfaces, the signature of supported methods. But contrary to Java

Interfaces, methods contained in Traits are allowed to be partially of fully implemented.

This way Scala provides a mechanism to add behavior to classes or objects, not only

via class based inheritance but also through composition of traits.

Scala was chosen as an implementation language for this project because it is a

fast and expressive language which has the ability to use Java-APIs because it is fully

interoperable with the rest of the Java ecosystem.

1 // s i n g l e t o n o b j e c t

2 object HelloWorld {
3 // main method

4 def main (args : Array [S t r ing]) {
5 p r i n t l n ("Hello, world!")

6 }
7 }

Listing 6: “Hello World” application in Scala

3.1.2 Lift

Lift was launched in 2007, so it is a relatively new web framework. It is an open source

project licensed under the Apache 2.0 License. Despite it only reached version 1.0 in

2009, it is already used at big companies like Foursquare and Novell.

The Lift web application is framework written in Scala. It is known to be secure,

elegant and scalable and uses a lot of Scala’s more advanced features like pattern

19

matching, type classes or the native support of XML. Lift also supports a specialized

and lightweight kind of actor implementation to power real-time web-applications that

use Comet to push content to the browser.

It also includes some database mapper libraries and a well fit template system.

There are also some server side bindings to interact with JavaScript running on the

client.

Because Lift 2.0 introduced a mapper library which can store persistent data inside

of MongoDB and its good support of concurrent actions with help of actors, it was

decided to use a preview version of Lift 2.0, which was still under heavy development

at that time.

3.1.3 MongoDB

MongoDB is an open source database system which uses a document based, schema

free data model. It is one of the new emerging noSQL data stores that don’t rely on

SQL as a query language and focus on special needs of application developers rather

than providing a general purpose solution.

Data inside MongoDB is stored in a format called Binary JSON (BSON), which

is a binary equivalent of JSON. This allows the data to be modeled more intuitively.

During the development process, it was also possible to change the data model on the

fly without having to alter some tables or migrate the data.

An other really useful feature of MongoDB was the ability to submit ad-hoc queries

for debugging purposes. These queries are written in JavaScript and JSON and can be

executed in an small shell environment called “mongo”. In Listing 7 a sample ad-hoc

query is shown as well as its result as a text representation.

1 db . u s e r s . f i n d ({"userName" : "pfleidi"}) ;

2

3 {
4 "_id" : ObjectId ("4c9b6dfec28b66d49fdba0ef") ,

5 "firstName" : "Sven" ,

6 "lastName" : "Pfleiderer" ,

7 "email" : "sven@roothausen.de" ,

8 "locale" : "en_US" ,

9 . . .

10 }

Listing 7: Ad-Hoc query submitted via the MongoDB shell

20

3.1.4 SBT

The Simple Build Tool (SBT) is used to package the application, manage dependencies

and to automate the build process. At first Apache Maven was used to to that job but

since SBT is the tool preferred in Lift 2.0, the project was migrated to use SBT instead

of Maven.

3.2 Application architecture

3.2.1 Big picture

Packet structure The project is structured in two namespaces: “boot.liftweb” and

“de.roothausen.*”. While boot.liftweb only contains some configuration options for

the Lift framework itself, the whole application code is located in de.roothausen.*. The

current state of all used packages can be seen in Figure 5.

Figure 5: Structure of project packets

API Data flow The most important part of the application is its ability to manage

incoming requests over an API defined in Section 2. As seen in Figure 6, all API

requests are routed through a central dispatcher. This dispatcher redirects the requests

to utility methods of the corresponding objects: ServerInfo for the “/meta/”-namespace

and User for “{userName}” where userName is the name of a valid registered user on

this system.

21

Figure 6: API dispatch overview

If a request needs to display a special data type or contact data has to be modified,

the request will be delegated to the right object responsible for that particular request.

User-Interface The User-Interface shown in Figure 7 is clean, very simple and only

offers elements for the most important actions to the user: There are some forms to

sign up, to view and change your data and to add new contacts. If one is logged in, a

list of all added contacts is shown to the user.

3.2.2 Configuration

Because the application uses as much default values as possible, not much configuration

is needed to get started. If an additional email server is needed to send confirmation

emails, this can be done in property files.

1 mail . smtp . auth=true

2 mail . smtp . host=l o c a l h o s t

3 mail . smtp . user=foo

4 mail . smtp . pass=bar

5 mail . smtp . s t a r t t l s . enable=fa l se

6 mail . smtp . s s l . t r u s t=∗
7

22

Figure 7: Screenshot of the current UI

8 r d d r s s r . email from=rddrssr@roothausen . de

9 r d d r s s r . s e r v e r i n f o . name=r d d r s s r . i o

10 r d d r s s r . s e r v e r i n f o . so f tware=s c a l a foobar

11 r d d r s s r . s e r v e r i n f o . ba s eu r l=http : // contac ta . de :8080/

12 r d d r s s r . s e r v e r i n f o . v e r s i on=1

Listing 8: default.properties file for configuration

All configuration options are included in the sample file featured in Listing 8. All

entries beginning with mail.* are actually only needed if confirmation emails should

be used to confirm email addresses of users or if password reset messages have to be

mailed to a user.

All options beginning with rddrssr.* are mostly responsible for server metadata.

For testing purposes, the defaults will work fine.

3.2.3 Companion objects

Scala does not support static methods, like Java does. As an alternative, Scala supports

singleton objects which are defined by the “object”-keyword which can be used instead

of the “class”-keyword. These singleton objects only have one instance running and

this instance can be accessed by its name. If one wanted to call a method bar() on an

object Foo, all he or she had to do was to call Foo.bar().

Companion objects can have the same name but have other inheritance relationships

than a corresponding class. If there is a class with an object of the same name, this

object is called companion object.

All the data models are constructed after that principle: All database objects are

23

instances of a class and all utility methods that are not bound to a instance of this

class are located in the corresponding singleton companion.

1 class DataType extends MongoRecord [DataType] with MongoId [DataType]

{
2

3 object cname extends S t r i n g F i e l d (this , 50)

4 // more a t t r i b u t e s o f an ins tance

5

6 def toJson : JObject = {
7 // genera te JSON rep r e s en t a t i on o f t h i s in s tance

8 }
9

10 }
11

12 object DataType extends DataType with MongoMetaRecord [DataType]

13 with Li f tActo r with Loggable {
14

15 def getJson (name : S t r ing) : Box [JValue] = {
16 /∗ ge t database o b j e c t and re turn ob j . toJson

17 i f t h a t f a i l s , re turn an error o b j e c t ∗/
18 }
19

20

21 . . .

22 }

Listing 9: Usage of companion objects for data models

3.2.4 API-Dispatch

Lift already contains a trait called RestHelper. It provides a method called serve()

which is the base building block of the whole API dispatch. With the help of pattern

matching, all incoming requests can be routed to the responsible objects based on their

URL patterns. The request are also filtered based on the HTTP-verb used to make

this request. GetRequest means HTTP GET, PostRequest means HTTP POST and

so on.

For example, the pattern Req(”meta” ::”index” :: Nil , ”json”, GetRequest) means

it is is a request of type HTTP GET to the url /meta/index.json.

1 s e rve {
2 // metadata namespace

3 case Req("meta" : : "index" : : Nil , "json" , GetRequest) =>

24

4 e r ro rDi spatch (Se rve r I n f o . getJson)

5 case Req("meta" : : "types" : : "index" : : Nil , "json" , GetRequest

) =>

6 e r ro rDi spatch (Se rve r I n f o . getJsonTypes)

7 . . .

8 // user namespace

9 . . .

10 case r@Req(userName : : "relation" : : "new" : : Nil , "json" ,

PostRequest) => {
11 dispatchWithContainer (c r ea teConta ine r (r)) { (conta ine r) =>

12 User . respondToRelat ionCal l (userName , conta ine r)

13 }
14 }
15

16 }

Listing 10: Call of serve() inside RestHelper

The methods dispatchWithContainer and errorDispatch are utility methods which

execute passed in functions and return either the expected result of the function or an

error object. If an error object is returned, the framework is able to convert it to the

matching HTTP status code and show a human readable error message.

3.2.5 Database objects

As mentioned before, all database classes are constructed to have companion objects.

The classes inherit a lot of functionality from MongoRecord which is part of the Mon-

goRecord library. The companions inherit from the classes themselves and mix-in a

MongoMetaRecord trait. This trait contains methods used for this special kind of

companion object.

Figure 8 shows how the data model is composed of collections of data and their

attributes. These attributes contain the needed data. It is also possible to use references

which refer to entries in other collections. The main collection in this application is the

one where user data is stored. This user collection has references to contacts of a user.

1 class Attr ibute extends MongoRecord [Att r ibute]

2 with MongoId [Att r ibute] {
3 def meta = Attr ibute

4 object value extends S t r i n g F i e l d (this , 255)

5 }
6

7 object Attr ibute extends Attr ibute

8 with MongoMetaRecord [Att r ibute] {

25

Figure 8: Draft of the database model

9 def createRecord = new Attr ibute

10 override def co l l ect ionName = "attributes"

11 }

Listing 11: Simplified database object

3.2.6 JSON-Parsing

JSON generation and parsing is a really important part of the application. Fortunately,

the Lift framework already includes a really great module to work with JSON. There is

an integrated Domain Specific Language (DSL) which allows to generate JSON in an

intuitive way and there is also a mechanism which allows to map JSON code to Scala’s

Case-Classes. This mechanism is even powerful enough to check if the parsed input

contains the right types and is able to map these values to attributes of Case-Classes.

As seen in Listing 12, there are some modules which need to be imported. After

that, the generation of JSON is really simple and easy readable: The arrow (–>)

indicates an attribute value relationship and the tilde (˜) indicates that at this point a

new attribute is defined.

1 import r o o t . net . l i f t w e b . j son .

2 import r o o t . net . l i f t w e b . j son . JsonDSL .

26

3 import r o o t . net . l i f t w e b . j son . JsonAST .

4

5 // method to genera te JSON

6 def toJson : JObject = {
7 (("name" −> name . va lue) ˜

8 ("cname" −> cname . va lue) ˜

9 ("information" −> i n fo rmat ion . va lue) ˜

10 ("revision" −> r e v i s i o n . va lue) ˜

11 ("format" −> format . va lue) ˜

12 ("occurences" −> occurences) ˜

13 ("length" −> l ength . va lue))

14 }

Listing 12: Generation of JSON code

Listing 13 shows the parsing of JSON read from a file. The case class contains all

attributes of the format which should be parsed. If some attributes are missing, an

exception is thrown. This allows a convenient validation of incoming data and a really

simple way to map JSON content to objects.

1 // d e f i n i n g the s t r u c t u r e

2 case class Type (name : Str ing , cname : Str ing ,

3 i n fo rmat ion : Str ing , format : Str ing ,

4 l ength : Int , r e v i s i o n : Int , occurences : L i s t [Int])

5

6 def parseMethod (f i lenName : S t r ing) : Type = {
7 // read j son from f i l e

8 val data = Source . f romFi l e (f i l e , "utf-8") . g e tL ine s . mkString

9 val j s on = JsonParser . parse (data)

10 // imp l i c i t re turn o f the e x c t r a c t e d va lue

11 j s on . e x t r a c t [Type]

12 }

Listing 13: Parsing of JSON

3.2.7 Actor system

Incoming HTTP requests should complete as quickly as possible. To allow that, situ-

ations in which the system is blocked by some I/O-operation need to be avoided. As

a result of this requirement I/O-operations are mostly encapsulated in some kind of

actor which allows to run these operation in parallel.

Because the only HTTP-client included into Lift is the synchronous Apache HTTP-

Client, it was chosen to encapsulate this library within an actor. To allow some methods

27

to be executed asynchronously, some classes include the LiftActor trait to execute some

methods in a non-blocking manner.

1 object HttpCl ientActor extends Li f tActo r

2 with Loggable {
3

4 protected def messageHandler = {
5 case HttpGetRequest (u r l) => httpGet (u r l)

6 case HttpGetRequestWithCallback (ur l , c a l l b a c k) => c a l l b a c k !

httpGet (u r l)

7 }
8

9

10 private def httpGet (u r l : S t r ing) : HttpResponse = {
11 // implementat ion

12 }
13

14 }

Listing 14: Simplified HTTP Actor

28

4 Lessons Learned

4.1 Problems == Opportunities

This project was intended to be a proof of concept for a newly invented system, im-

plemented using bleeding edge technology. This normally means that it is likely that

problems occur nobody has even thought of. Because of this uncertainty, it was ac-

cepted and sometimes even embraced that something unexpected would happen.

Dealing with new technology always means learning. In this project this meant

looking into an implementation because some documentation didn’t exist and trying to

work around some errors nobody had foreseen. This section is intended to help others

in a similar situation.

4.2 Read framework code

Lift 2.0 was, at the time the project was implemented, a moving target: There were

changes in some APIs, new features were added and a lot of the documentation wasn’t

ready or didn’t exist.

Sometimes the only way getting into some APIs, was to read their source code. In

this project it was really helpful, both in understanding the framework and learning

the language itself, to be able to read the, quite well written, code of the lift-mongodb-

record module. Additionally this code provided a lot of ideas and patterns which helped

implementing other parts of the application.

Retrospectively seen, reading code did take a lot of time but it was absolutely worth

it.

4.3 Ask the community

A few times there were situations where reading source code didn’t help – either because

there was something wrong in the framework itself or because it just wasn’t clear why an

error did occur. In this case the Lift-community proved to be as “warm and welcoming”

as described on the lift website. There were a lot of helpful comments and the questions

asked were answered by someone who knew what was going on.

In the beginning of the project, a class called ProtoUser, which normally used the

relational mapper of lift, was modified to use the MongoDB backend. After some

problems with a PasswordField attribute, the description of that problem [Pfleiderer,

2010] was posted to the Lift mailinglist and the author of the MongoDB module for Lift

helped to fix the problem. He didn’t just point out were to look for: He introduced a

new class called MongoPasswordField to the framework which fixed the error and then

29

he created a sample project which was using the port of the ProtoUser class previously

mentioned.

4.4 If nothing else works: println does

This project was mostly written in Netbeans and VIM with plugins for Scala. Even if

netbeans was able to understand the folder structure, it didn’t have working facilities

do debug or profile running code.

Debugging hard problems without knowing what is going on is virtually impossible.

So there was a need to be able to get informations without using a debugging facility.

The way which always worked was to use the commandline-tool “curl” to simulate

a client, to get information of the application via logging statements and to look at

network traffic using sniffers like Wireshark or TCPDump.

4.5 Scala works well for web-development

Scala itself has proven, that it is elegant and expressive enough to provide a really good

programming experience. Even though it is statically typed, it was possible to write

small and concise code that did a lot of things. Using features like function literals,

pattern matching and traits to generalize code fragments the author was also able to

re-use a lot of the written code. This lead to shorter classes which were easier to review.

Even if the tooling for Scala isn’t really good at the moment, the language itself

provides a lot of features which make development of applications a lot more fun.

30

5 Perspective

5.1 Protocoll Specification Rework

5.1.1 Nobody is perfect

Nobody is perfect and the protocol proposal is no exception: There are some parts

which could be improved.

Some parts have to be specified because there wasn’t time to do so. Other parts

work fine but have to be renamed because the name is not semantically clear.

Some of the minor mistakes were fixed during the development process. But, there’s

still some baggage which has to be addressed. This section addresses some of the ideas

to improve the protocol proposal.

5.1.2 Get really RESTful

In it’s current state, the protocol uses only HTTP GET and POST to do all commu-

nication between servers. This design was chosen because authentication information

had to be transported somewhere within a request.

The goal is to get rid of some of the POST requests and replace them with PUT

and DELETE where it is semantically advisable. To do that there has to be another

way to transport authentication data.

At the moment the most appealing choice is to transport authentication data such

as checksums or signatures via custom fields added to the HTTP header of a request.

If this scheme works and can be easily implemented, update and delete requests do not

need to be implemented using POST requests.

5.1.3 Model clear semantics

To readers, which are new to the protocol, it is often not clear what the difference

between a relation and link request is and how to use them. To address this, the model

of an initiation requests and it’s URL-structures need some redefining to represent the

underlying semantics in a clear and concise way.

5.2 Implementation Rework

Not only the protocol, but also the implementation itself has to be re-factored. The

most probable action would be to take the most important parts and adapt them to

new protocol specification. The parts which were written at the beginning, like the

user management and the notification email support, are the ones which are most

error-prone so it would be a good idea to write them from scratch.

31

Additionally, the current implementation does not contain any interfaces to support

clients. This and many other features have to be implemented, as well.

32

6 References

References

Crockford, D. (2006). Rfc4627: Javascript object notation.

Ecma International (1999). Ecmascript language specification. Standard ECMA-262.

Fielding, R. (2000). Architectural styles and the design of network-based software ar-

chitectures. PhD thesis, Citeseer.

Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and Berners-

Lee, T. (1999). Rfc 2616, hypertext transfer protocol – http/1.1.

Ghosh, D. (2008). Scala actors 101 - threadless and scalable. http://java.dzone.

com/articles/scala-threadless-concurrent.

Haarmann, M. (2010). Distributed management of personal contact data.

Jones, H. and Soltren, J. (2005). Facebook: Threats to privacy. Project MAC: MIT

Project on Mathematics and Computing.

Pfleiderer, S. (2010). Protouser with mongorecords - google-groups. http://groups.

google.com/group/liftweb/browse_thread/thread/add984be7d476a43/

da71c2f2c349ec39l#da71c2f2c349ec39.

Wahl, M., Howes, T., and Kille, S. (1997). Lightweight Directory Access Protocol (v3).

RFC 2251 (Proposed Standard). Obsoleted by RFCs 4510, 4511, 4513, 4512, updated

by RFCs 3377, 3771.

33

http://java.dzone.com/articles/scala-threadless-concurrent
http://java.dzone.com/articles/scala-threadless-concurrent
http://groups.google.com/group/liftweb/browse_thread/thread/add984be7d476a43/da71c2f2c349ec39l#da71c2f2c349ec39
http://groups.google.com/group/liftweb/browse_thread/thread/add984be7d476a43/da71c2f2c349ec39l#da71c2f2c349ec39
http://groups.google.com/group/liftweb/browse_thread/thread/add984be7d476a43/da71c2f2c349ec39l#da71c2f2c349ec39

	Motivation
	Current Situation
	Digital Communication
	Groupware
	Cloud based Solutions
	Social Networks

	Where Is The Innovation?

	Protocol Design
	Design Goals
	Introduction
	Open
	Complete
	Secure
	Distributed
	Easily understandable

	Technical Decisions
	Brief Overview
	HTTP Transport
	REST Semantics
	JSON Data Format
	RSA Encryption/Signatures

	Metadata Transport
	Why metadata?
	Server Info
	Types

	Payload Transport
	Supported actions
	User Data
	Request Cycle
	Transport Container
	Security

	Changes

	Implementation
	Frameworks and Middleware
	Scala
	Lift
	MongoDB
	SBT

	Application architecture
	Big picture
	Configuration
	Companion objects
	API-Dispatch
	Database objects
	JSON-Parsing
	Actor system

	Lessons Learned
	Problems == Opportunities
	Read framework code
	Ask the community
	If nothing else works: println does
	Scala works well for web-development

	Perspective
	Protocoll Specification Rework
	Nobody is perfect
	Get really RESTful
	Model clear semantics

	Implementation Rework

	References

